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A. Šimůnek1, J. Vackář1,a, K. Kunc2, and J. Hutter3

1 Institute of Physics, Academy of Sciences of the Czech Republic Cukrovarnická 10, 162 53 Praha 6, Czech Republic
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Abstract. A soft, norm-conserving pseudopotential for carbon is presented and its performance tested by
calculations on atomic states and on diamond: electronic energy levels of different atomic configurations,
equilibrium lattice constant, bulk modulus, and the TA(X) frozen-phonon frequency are accurately repro-
duced. Convergence of the total energy of diamond with the size of the plane-wave basis set is compared
for several frequently used pseudopotentials, and it is shown that calculations with the reported pseudopo-
tential can be performed at considerably lower cost than with the other norm-conserving pseudopotentials,
without loosing the accuracy of the latter in predicting structural and dynamical properties. The rapid
convergence of the results with the plane-wave cutoff is comparable to the performance of the Vanderbilt’s
ultrasoft pseudopotentials. The transferability of the pseudopotential to other electronic configurations is
discussed.

PACS. 71.20.-b Electron density of states and band structure of crystalline solids – 71.20.Ps Other inor-
ganic compounds

1 Introduction

Application of ab initio methods to calculation of prop-
erties of complex materials has led in the past years
to significant improvement in understanding material
properties on atomistic level. Amid the different com-
putational techniques, the ones working in plane wave
basis and using pseudopotential to describe the electron-
ion interaction are of particular importance and have
numerous advantages. Among the most convenient fea-
tures we note the unbiased representation of the wavefunc-
tion, controlled convergence, high calculational efficiency
when used with up-to-date Fast-Fourier-Transform algo-
rithms, and a straightforward implementation of the equa-
tions of motion of the Car-Parinello method. Although
many attempts have been made in recent years to optimize
the plane wave convergence of the pseudopotential calcu-
lations, improvements are still possible that considerably
lower the cost of computations. In this paper we demon-
strate on the example of carbon that one can construct
norm-conserving pseudopotentials which significantly re-
duce the size of the plane-wave basis set required for ob-
taining converged and accurate results.
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2 Method

We have applied to carbon the “phase-shift” technique for
generation of soft pseudopotentials, that was proposed in
reference [1]. This method creates generalized [2] norm-
conserving l-dependent pseudopotentials “directly”, with-
out relying on the inversion of the Schrödinger equation.
It is useful to remind that, as an alternative to that in-
version, one might envisage the straightforward iterative
searching for the matching logarithmic derivatives. How-
ever, it turns out that such an approach is inapplicable
because of its numerical instability. An equivalent but nu-
merically stable way suggested in reference [1] is to impose
conditions on phase shifts and to find the pseudopoten-
tial satisfying these conditions by an iterative technique.
An interesting feature of the procedure formulated in
reference [1] is that it possesses additional “degrees of free-
dom”, rather than the minimum indispensable for merely
mimicking the all-electron results. These “redundant” pa-
rameters can then be used to make the pseudopotential
satisfy some additional conditions: optimal smoothness,
“computational efficiency” in plane-wave basis, or other
requirements.

In the present case, we selected as reference-
configuration of carbon the ground state 1s22s22p23d0,
and chose as reference energies the atomic eigenvalues;
among several choices for the cutoff radii Rc, we retained
the radius Rc = 2.0 a.u. for ` = 0 and ` = 1 nonlocal
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Table 1. Pseudopotentials generated in this work (Fig. 1), in hartree units, expanded in terms of Gaussian functions: the
coefficients below have exactly the same meaning as the parametrization of the BHS pseudopotentials (Eqs. (2.21, 2.22) of
Ref. [4]).

core l = 0 l = 1 l = 2

α1 1.94980 1.23090 3.99920 1.

α2 0.80800 1.11610 1.22790 1.

α3 0.99750 1.16590 1.

c1 1.12070

c2 −0.12070

A1 −8.5707323237E+04 1.0012285592E+00 0.

A2 2.4476199271E+04 −1.0769391860E+04 0.

A3 6.1233984224E+04 1.0765078640E+04 0.

A4 −3.4670805459E+03 2.9558085596E+00 0.

A5 −1.1396755049E+04 −3.4445382995E+02 0.

A6 −2.2377639493E+03 −3.2109229790E+02 0.

Z 4.00000

Fig. 1. The present pseudopotential of carbon, in the recipro-
cal (a) and direct (b) spaces. Solid lines: s-component; dashed
lines: p-component; dotted lines: the d-component (chosen as
“local”, i.e. to be applied to all ` ≥ 2). Atomic units (bohr and
hartree) are used.

components. We choose l = 2 as the “local” part, meaning
that it will serve as pseudopotential for all the ` ≥ 2 com-
ponents. Minimization of the curvature of the (screened)
pseudopotential at the origin (see Ref. [3]) was imposed as
the additional requirement. The resulting pseudopotential
is shown in Figure 1 and, for easy use, we parametrized its
components in terms of Gaussian functions, in exactly the
same way as Bachelet, Hamann and Schlüter (BHS) did
(Eqs. (2.21, 2.22) of Ref. [4]). The corresponding αi, ci
and Ai coefficients are given in Table 1. In direct space
(Fig. 1b) we see that all components of our potential
form very smooth curves. In reciprocal space (Fig. 1a) it
is clearly visible that, in the plane-wave formalism, the
pseudopotential will produce rapidly converging results
because all components of the pseudopotential vanish at
q > 7 a.u.−1.

Table 2. Electron energy levels of carbon calculated for a vari-
ety of electronic configurations, using the present pseudopoten-
tial, compared with the all-electron energies. For each atomic
configuration the first row corresponds to the “all-electron”
calculation, the second row to the pseudoatom results. Config-
urations are ordered according to decreasing eigenvalues. For
the very first unstable negative-ion configuration, the positive
eigenvalue of the occupied d-state has been determined by the
phase-shift condition.

(a) used in reference [4] to derive the BHS potential for ` = 2.

valence configuration eigenvalues [eV]

2s 2p 3d

s2.0p2.0d0.2 −11.196 −3.097 1.074

−11.216 −3.137 1.074

s2.0p2.0d0.0 −13.613 −5.425 1.004

−13.640 −5.464 1.004

s1.0p3.0d0.0 −14.048 −5.825 0.995

−14.093 −5.897 0.998

s2.0p1.5d0.5 −17.904 −9.545 −0.195

−17.929 −9.550 −0.195

s1.5p1.5d0.5 −23.701 −15.260 −1.608

−23.772 −15.257 −1.608

s0.75p1.0d0.25 (a) −41.592 −33.362 −9.394

−41.827 −33.179 −9.352

3 Tests

We first checked the pseudopotential on atom, in various
excited-state configurations, and the results are summa-
rized in Table 2. The LDA with the Ceperley-Alder [5]
form, parametrized by Perdew and Zunger, was applied
throughout this paper as exchange-correlation potential
in the Kohn-Sham equations, both in atomic calculations
and on solid. The good agreement between the all-electron
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Fig. 2. Convergence of the total energy of diamond with plane-
wave cutoff Ecut, compared for six types of pseudopotential.
The symbols correspond to calculations of Etot (per atom) at
a = 3.50 Å, the connecting lines are guide to the eye. Two dif-
ferent Vanderbilt-type ultrasoft pseudopotentials correspond
to different choices of the radii rc,l, r

loc
c and r0 (see Ref. [9]),

viz. 1.25 (l = 0, 1), 1.10, 0.60 a.u.(a), and 1.40 (l = 0, 1), 1.30,
0.90 a.u. (b), respectively.

and pseudopotential eigenvalues, which is apparent from
Table 2, in wide energy range and for various valence con-
figurations, makes one to expect a good transferability of
this pseudopotential to different crystal environments; we
will return to this point later. A particularly good agree-
ment can be observed for the d-states of an atom, the ones
that correspond to the “local” d component of the poten-
tial. The pseudopotential actually used in all the tests
on atom was reconstructed from the parameters listed in
Table 1; this explains why the energy levels in the ground
state configuration are not strictly identical with the all-
electron calculations, as one would expect.

In order to test the performance of the pseudopoten-
tial in a solid we started by evaluating the (absolute) en-
ergies of diamond, at a = 3.50 Å – in plane-wave basis,
and using the same LDA formalism [6] – as a function of
the plane-wave cutoff Ecut; the results are shown in Fig-
ure 2. In this test the translational unit cell of diamond
structure was chosen to be cubic (eight atoms per cell),
and a single k-point (Γ ) was used for the Brillouin zone
integration. For comparison, we report in Figure 2 the
results obtained with several other pseudopotentials that
are nowadays currently used, viz. the Troullier-Martins [3]
(TM), Goedecker [7] (GOE), and Stumpf, Gonze,
Scheffler [8] (SGS) norm-conserving pseudopotentials, as
well as with two constructions of the ultrasoft pseudopo-
tential of Vanderbilt [9] (VDB).

The SGS pseudopotentials reference [8] are, essentially,
a ghost-free variant of the well-known BHS pseudopoten-
tials [4], that are adapted for use with the Kleinman-
Bylander decomposition for calculation of non-local ma-
trix elements. As the same core-radii and the same elec-
tronic configurations were used for their generation, the

plane-wave convergence properties of the SGS and BHS
pseudopotentials will be considered identical.

The two different ultrasoft VDB pseudopotentials to
which we refer in Figure 2 correspond to two different
choices of the core-radii and of the other “internal” param-
eters: the VDB(b) is the softest, the VDB(a) is somewhat
harder – still in the ultrasoft category – and, presumably,
more precise.

The absolute energies in Figure 2 are plotted as long
as they vary by more than 0.001 eV/atom from one cutoff
to the next (higher by 12 Ry).

One can distinguish in Figure 2 two types of behavior:

1) with the hardest and the most accurate pseudopoten-
tials (the SGS-BHS and GOE), the absolute energy
varies with Ecut slowly and the convergence is achieved
only at around ≈ 120 Ry;

2) At the other extreme, with the ultrasoft Vanderbilt
pseudopotentials, the energy gets “stabilized” already
with small number of plane-waves, typically between
20 and 40 Ry.

While the behavior of the Troullier-Martins pseudopo-
tential falls between the two types, Figure 2 suggests that
the convergence properties of our present pseudopotential
are closer to the ultrasoft family rather than to the other
norm-conserving constructions.

It may be opportune to recall that the present pseu-
dopotentials are norm-conserving as well – which has a
certain value in their implementation and in use; the sim-
plicity is further augmented when the Kleinman-Bylander
decomposition is employed because, as one quickly dis-
covers, the pseudopotential defined by Table 1 does not
produce any ghost states.

Achieving convergence of the absolute energies
amounts to requiring more than usually needed, because
in most applications only the relative energies are sought:
an energy difference of two systems, between two atomic
configurations, or the form of energy-variation with a pa-
rameter. As the next step we thus tested the convergence
of the calculated relative energies and, in particular, their
accuracy. The test-quantities selected: the static equilib-
rium of the diamond structure (energy at the minimum
(E0), lattice constant (a0), bulk modulus (B0), pressure
derivative of B0 (B′)), and the frozen phonon frequency
of the TA(X) mode. In this test we use as gauge the
BHS pseudopotential which, probably, is the best known
“standard” and which counts to the most accurate pseu-
dopotential schemes. These calculations were performed
on the primitive translational unit of diamond structure
(2 at./cell), using the 10 k-point sampling of Monkhorst-
Pack, and without employing the Kleinman-Bylander de-
composition; the frozen phonon calculations are performed
on a tetragonal unit cell (volume a3

0/2 (calculated static
equilibrium), 4 at./cell) and with three “special” k-points.
In this test we have calculated the total energy of diamond
for 8 different values of lattice constant a varying between
3.20 and 3.70 Å, and fitted the resulting Etot(V ) by the
Murnaghan equation of state. The results obtained with
different plane-wave cutoffs, are summarized in Table 3.
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Table 3. Convergence of selected ground-state properties with the increasing plane-wave cutoff: the value of the energy per atom
at the minimum E0, equilibrium lattice constant a0, bulk modulus B0, and its pressure derivative B′ were obtained through a
fit by Murnaghan equation of state; νTA(X) is the frequency of the frozen phonon TA(X). The analogous results obtained with
the BHS pseudopotential (Ref. [4]) are given for comparison.

E0 [eV] a0 [Å] B0 [Mbar] B′ νTA(X) [THz]

Ecut [Ry] present BHS present BHS present BHS present BHS present BHS

24 −155.38 3.50 5.69 2.40 24.61 23.49

36 −156.13 −153.55 3.51 3.63 4.38 5.02 3.13 1.01 24.18 23.37

48 −156.24 −154.51 3.50 3.55 4.64 4.99 3.13 2.63 24.22 23.52

60 −156.25 −154.97 3.50 3.55 4.62 3.99 3.18 3.78 24.23 23.51

72 −155.28 3.54 4.88 2.69

exp. 3.567 4.43 24.2

After all what has been said, it does not come as big
surprise finding that Table 3 shows comparable accuracy
for both sets of “predictions” – all results are within the
error range usual for the LDA calculations – and that
it demonstrates a faster convergence of static equilibrium
when our present scheme is used. Taking into account that
alone fitting the E(V ) by an equation of state introduces
a small uncertainty in the equilibrium values (of the or-
der ≈ 1% in a0, and at least ≈ 3% in B0), the Table 3
demonstrates that fully converged results are obtained at
Ecut ≤ 36 Ry.

The accuracy and the convergence of energy differences
is further tested on the frequency of the frozen phonon
TA(X) in diamond. This particular phonon is known [10]
to be extremely sensitive to the energy cutoff used be-
cause of cancellation of different contributions to Etot;
this “probe” is a very stringent test of the accuracy of to-
tal energy calculations of any sort. Table 3 and Figure 3a
demonstrate a complete convergence of this quantity at
Ecut = 36 Ry, and an excellent agreement with the exper-
imental value, when the present pseudopotential is used.

As the last test we follow the behavior of pressure p ≡
∂Etot/∂V . Calculating pressure is an alternative way of
establishing static equilibrium (the condition p(a) = 0),
and this test brings us back to the “absolute” quantities
belonging to the same category as e.g. the absolute energy
in Figure 2. The derivative ∂Etot/∂V offers a probe that
is even more sensitive to the size of the basis set than the
energy alone (see e.g. Ref. [11]), and the variation of p
shows in a strongly enhanced form the differences that, in
principle, were apparent already in Figure 2. In Figure 3b
we have thus plotted the variation p(Ecut), calculated for
different Epw at the fixed a0 = 3.57 Å, with the aid of
the stress theorem [12]. This formula is analogous to the
well-known Hellmann-Feynman theorem, and the pressure
is obtained directly from the self-consistent potential and
the charge density.

Compared to the calculation using the BHS pspt., the
much faster convergence of p(Ecut) is immediately appar-
ent in Figure 3b, and we note that the results obtained
with both pseudopotentials agree at very high cutoffs
Ecut, when both calculations become converged. Besides

Fig. 3. Convergence with plane-wave cutoff of the frequency
of the frozen phonon TA(X), and of the pressure calculated
at (fixed) lattice constant a0 = 3.57 Å, using the present car-
bon pseudopotential (solid lines). The analogous variations ob-
tained with the BHS pseudopotential are shown for comparison
(dotted lines).

clearly documenting the accuracy, the variations p(Ecut)
and ν(TA(X)) shown in Figure 3 are the most rigorous of
all the convergence tests shown in this work.

Besides “softness” and accuracy in predicting mea-
surable quantities, another important quality of a good
pseudopotential is its transferability: the validity in other
crystal environments and, namely, with different types
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of bonding. Although a thorough test of transferability
would be beyond the scope of this short note, we can re-
port the structural result we obtained with the present
pseudopotential in graphite: the in-plane lattice constant
a = 4.59 Å (1.3% under the experiment). The result for
a suggests that the present pseudopotential performs well
in the description of the sp2 bonds as well; its application
to fullerenes, nanotubes, etc. can thus be envisaged. We
also note that the present pseudopotential was applied in
reference [13], with success, to calculation of one-electron
energies, pseudowavefunctions and densities of states
(DOS) of graphite. In reference [13], both σ- and π- cal-
culated densities of states were found in a very good ac-
cordance with measured K-polarized bands. Additionally,
the calculated band structure is consistent with the re-
cent review of electronic band structure calculations of
graphite [14].

It remains to hope that future applications of the pseu-
dopotential introduced here to many different physical
problems will establish the transferability in an exhaus-
tive manner.

4 Conclusions

We have presented a norm-conserving pseudopotential for
carbon that rapidly converges in reciprocal space, and
demonstrated that convergence of total-energy related
quantities with number of plane waves can be achieved
at the cutoff energies of order Ecut = 36 Ry – which is
comparable with the performance of the ultrasoft Van-
derbilt pseudopotentials. The pseudopotential is given in
an l-dependent form, and parametrized in the same way
as the well-known Bachelet-Hamann-Schlüter pseudopo-
tentials. When transformed into the Kleinman-Bylander
form, the present pseudopotential does not lead to any
ghost states. Applying this scheme in material science and
organic chemistry will significantly facilitate all calcula-
tions employing plane waves as basis set.

This work was supported by grants Nos. A1010-717 and A1010-
906 of the Grant Agency of the Academy of Sciences of the

Czech Republic. The results shown in Figure 2 were obtained
using the codes CPMD [15].
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